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1 Summary 

The yield of amine-loaded microcapsuies has been improved by modifying vortex speed, 
formulation, and glassware. The microcapsuies have been purified and added to an isocyanate 
resin to successfully form a pressure-activated adhesive. A number of new caustic materials are 
being evaluated for their ability to degrade bacterial cellulose. So far NaOH/urea mixtures have 
caused the most rapid degradation of cellulose. Lastly, modified grill brushes have been 
fabricated and tested under a compressive load. With 50% of the bristles angled at 30° from the 
normal, they collapse under a critical load of 40-50 pounds. 

2 Project Goals and Objectives 

The amine-loaded microcapsuies and adhesive putty have been successfully synthesized in the 
first two months according to schedule. For the next three months, the project plan calls for 
parallel development of the pressure-activated adhesive, water-activated caustic cleaning agent, 
and mechanically activated abrasive brush. 

3 Key Accomplishments 

3.1   Amine Microencapsulation 

As described in last month's report, we have developed a method for synthesizing amine- 
loaded microcapsuies using a reverse-phase emulsification. Initially, yields were estimated to be 
below 75% due to uncontrolled polymerization and droplet coalescence. We tried to address 
these issues by changing the stirring rate, changing the type of stirring blade, changing the 
glassware, and adjusting the chemistry. The reaction conditions are given in Table 1 below: 

Total Solution PIB Nanoclay      Isocyanate 1    Isocyanate 1    Isocyanate 2    Isocyanate 2       Amine 1 Amine 1 Amine 2 Amine 2 Amine 3 Amine 3        Spin Speed 
Mass (g)      Concentration Concentration Concentration Concentration Concentration Concentration Concentration        (RPM) 

(g/9) (g/g) (g/g) (g/g) (g/g) (g/g) (g/g) 

n 3% 03% TD1 5% 0% DETA 4« LowPEI M 

75 3% 0 3% IPDI 5% 0% DETA 7% LowPEI 7\ 

75 3% 0 3% IPDI 5% PHMDI 1% DEIA 7% Low PEI* 7% 

75 3% 0.3% IPDI 5* PHMDI M DETA 7% LowPEI m 

75 3% 03% IPDI 3% TDi 3% DETA 7* Low PEI 7% 

75 3% 0 3% IPDI 3% TDI 3% DETA 6% LowPEI m High PEI 

0% 1500 

0% 

0% 8000 

0% 8000 

0% 1700 

25% 1700 

High PEI 

Table 1: List of experimental parameters for amine-loaded microcapsule synthesis.  The bottom 
 sample on the list produced the highest yield of microcapsuies.  

The best results were obtained using a mechanical stirrer in a round bottom flask. A 
combination of IPDI and TDI were found to produce tougher polymer shells than either by itself, 
and high molecular weight PEI was crucial for stabilizing microcapsule droplets during the 
initial addition of isocyanates. An example of microcapsuies from this batch are shown in Figure 
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1, along with a micrograph showing a large amount of liquid released when the microcapsules 
are broken beneath a glass cover slip. The microcapsules are sufficiently robust to form stable 
mixtures with IPDI. This crude pressure-activated adhesive has the consistency of toothpaste, 
and rapidly forms a hard polymer when pressed between a pair of glass slides. The resulting 
adhesive bond is shown in Figure 2. 

50 pm 

Figure 1: (left) Optical micrograph of a pair of amine-loaded microcapsules. (right) A 
microcapsule is crushed between a glass slide and cover slip, revealing its liquid 
contents. 

Figure 2: Two glass slides glued together using a mixture of amine-loaded microcapsules and 
 IPDI __ 

3.2 Alternative Caustic Ingredients 

In addition to oxalic acid and sodium percarbonate, we have also begun to explore alternative 
caustics to rapidly break down cellulose. Toluenesulfonic acid is an organic form of sulfuric 
acid that is more acidic than oxalic acid. Much like oxalic acid, it comes as a dry powder and 
forms stable mixtures with sodium percarbonate that foam when added to water. 

We have also begun to investigate using bases rather than acids to catalyze hydrolysis. NaOH 
and KOH are currently under evaluation. Unlike the two acids described above, they do not 
cause the sodium percarbonate to outgas, but they do form stable dry mixtures. 

Literature searches have also revealed that urea can be helpful in breaking up the hydrogen 
bonds in cellulose crystals. This reduces crystallinity and thereby improves the penetration of 
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acids, bases, or radicals. Lastly, we have also begun to evaluate powdered soaps to help loosen 
and break up debris. 

To date, we have not observed dramatic cellulosic breakdown in any of our mixtures. The 
best performance was from a mixture of sodium hydroxide and urea that caused a bacterial 
cellulose pellet to decrease in volume by about one half over the course of an hour. 
Interestingly, this combination worked best at temperatures close to freezing. 

3.3  Load-Displacement Testing of Metal Brush 

Three grill brushes were modified by pruning and bending the bristles to fixed angles with 
respect to the normal (Fig. 3). It immediately became clear that the bristle angle would have a 
large spread about the average. We also observed that the accuracy was limited to about ± 15°. 
Nevertheless, we prepared three samples by first pruning 50% of the bristles and then bending 
the remaining bristles with needle-nose pliers. 

Figure 3: (left) Grill brush with 50% of the bristles pruned and bent 60° with respect to the 
normal, (right) The same but with bristles bent only 30° with respect to the normal. 
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Figure 4: Load-displacement curves for grill brushes with 50% of the bristles pruned and bent 
30° with respect to the normal. All samples were tested in compression. Sample 1 
 was tested a second time to show that no critical load was observed during the retest. 
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Figure 5: Load-displacement curve for a grill brush with 50% of the bristles pruned and bent 
with a 60° angle with the normal. Note the similarity with a 30° sample that was 
retested. The compressive load gradually rises to about 50 pounds before taking off, 

 and all 0.5 inches of displacement are stored elastically.  

The load-displacement curves in Figure 4 give a critical load of 50 pounds for the first 30° 
sample and 40 pounds for the second. Observe how the load rises more dramatically at the end 
of the test after the bristles lie completely flat. About 10 pounds of that load is stored elastically 
in the bristles when they bounce back after the load is removed. About 0.2 inches of 
displacement are also recovered. Upon retest, the critical load is no longer observed. 

When the bristle angle is increased to 60°, a well-defined critical load is no longer observed 
(Fig. 5). Bending these bristles to such a large angle has apparently consumed the majority of 
the available plastic strain. The similarities between the loading and unloading curve indicate 
that bending the bristles from 60° to 90° is largely elastic. A comparison with the retest of the 
30° sample gives further credence to the idea that the bristles naturally bounce back to 
approximately 60° after they have been bent completely flat. 

A critical load is desirable for this application because it would help protect the pressure- 
activated adhesive prior to use. The overall adhesive system will be designed so that the critical 
load to collapse the bristles will be greater than the critical load for activating the adhesive. 

4   Next Steps 

4.1   Pressure-Activated Adhesive 

For the time being, the seventh recipe in Table 1 will be used to synthesize microcapsules for 
the adhesive putty. The adhesive strength will be optimized by varying: (1) the type of 
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commercial isocyanate resin, (2) the ratio of resin to microcapsules, (3) the ratio of DETA and 
PEI inside the microcapsules, and (4) the microcapsule diameter. 

4.2 Water-Activated Caustic 

Next month we will employ design of experiments (DOE) to rapidly screen our caustic 
formulations to identify the combination of ingredients that most rapidly hydrolyzes cellulose. 
We also plan to identify a method for measuring the hydrolysis kinetics that can also withstand 
extreme pH values. 

4.3 Abrasive Brush 

Next month we will perform a more systematic investigation of the effects of bristle angle and 
bristle density on the critical load for collapse. We will first measure 30°, 45°, and 60° samples 
with a 50% bristle density. Then we will repeat the study using a 10% bristle density. Our goal 
is to achieve a critical load of about 10 pounds with a minimal level of residual stress when 
completely flattened (90° angle). 
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